News

Allulose Patents Granted to Bonumose for Unique Enzymatic Conversion Process

Bonumose is pleased to announce that the U.S. Patent & Trademark Office has issued U.S. Patent No. 11,078,506 for “Enzymatic Production of D-Allulose”.

This patent issuance follows Bonumose’s Allulose U.S. Patent No. 11,053,528 (July 6, 2021) and allulose U.S. Patent No. 10,704,069 (July 7, 2020). Bonumose has been issued additional Allulose patents and/or has patent applications pending in all major sugar-consuming and sugar-producing countries. Bonumose also has a broad patent portfolio for Tagatose production, as well as for related materials and processes.

The global Allulose market recently was described as a “dumpster fire” (Food Navigator-USA, June 28, 2021).

Bonumose’s approach is markedly different from other Allulose producers.

The standard way to produce Allulose involves a low-yield enzymatic conversion of fructose to Allulose – a conversion that is inherently limited because the enzymatic reaction is reversible. There are multiple processing steps, including the following major ones: (1) starch dextrinization; (2) liquefaction to produce glucose; (3) isomerization of glucose to produce a syrup with 42% fructose content (limited yield due to a reversible enzymatic reaction); (4) separation of fructose from glucose and other sugars in the syrup; (5) partial enzymatic conversion of fructose to produce a syrup with 25%-30% Allulose (limited yield due to a reversible enzymatic reaction); (6) separation of Allulose from fructose; and (7) purification and crystallization.

Alternatively, fructose can be produced by (1) hydrolyzing sucrose (sugar), (2) separating the fructose from glucose (theoretical 50% yield), then continuing from step #5 shown above and/or converting the glucose to fructose as in step #3 above.

Bonumose’s patented process is much more streamlined and eliminates several processing steps. After starch dextrinization, Bonumose’s proprietary blend of enzymes combine in an irreversible enzymatic reaction to directly convert maltodextrin to ~90% yields of Allulose. This is followed by relatively simple purification and crystallization for pure granulated Allulose.

In summary, Bonumose starts with a less processed feedstock (maltodextrin instead of fructose) and still achieves Allulose yields that are 3X-4X higher than fructose-to-Allulose conversions.

Due to Bonumose’s patented enzymatic technology breakthrough, as well as Bonumose’s other technical and business model innovations, Bonumose expects to be able to reduce the cost of Allulose to food & beverage producers globally.

In pursuing its mission to make great-tasting, healthy rare sugars affordable for more people around the world, Bonumose will continue to devote the resources necessary to extend and defend its global intellectual property rights.

Recent News

04/24/2024

VIPC Names Joe Benevento as President & CEO

The Board of Directors of the Virginia Innovation Partnership Corporation (VIPC) has announced that it has unanimously selected Joe Benevento as President and CEO of VIPC. Benevento has led VIPC as Interim President and CEO since September 2023 and previously served as Deputy Secretary of Commerce and Trade for the Commonwealth of Virginia since 2022.

04/23/2024

AMPEL BioSolutions Selected as Member of Prestigious Federal Health Innovation ARPA-H Network

AMPEL BioSolutions has been selected as a member – or “spoke” – of the Customer Experience Hub of ARPANET-H, a prestigious nationwide health innovation network launched by the Advanced Research Projects Agency for Health (ARPA-H).  This national effort is designed to accelerate commercialization of health breakthroughs for populations that urgently need them. The Customer Experience Hub in Dallas joins Boston

04/19/2024

ivWatch prevents IV leakage events at Frimley Health

Frimley Health NHS Foundation Trust has found that 100% of IV leakage incidents were prevented by a proprietary patient monitoring system from ivWatch, which could potentially save patients the pain or discomfort of adverse IV events. The initial two-week phase of the study, which was published in the British Journal of Nursing, found that continuous